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Abstract—This paper describes the results of a novelical flights, b) finding events during the course of such
research and development effort conducted at thdlights that are anomalous or atypical. Task b) is impor-
NASA Ames Research Center for discovering anoma-tant as each flight generates large amounts of data during
lies in discrete parameter sequences recorded from flighits course, and simply identifying a flight as anomalous
datal 2.Many of the discrete parameters that are recordedtill leaves the problem of identifying the problem areas
during the flight of a commercial airliner correspond to inside the flight unaddressed.
binary switches inside the cockpit. The inputs to our sys-
tem are records from thousands of flights for a given clas®Ve treat the problem of finding atypical flights as an un-
of aircraft and destination. The system delivers a list ofsupervised learning problem. We first cluster the flights
potentially anomalous flights as well as reasons why thdor each itinerary into groups, and identify the outliers in
flight was tagged as anomalous. This output can be areach cluster as atypical. We use the Longest Common
alyzed by safety experts to determine whether or not th&ubsequence, a common measure in bioinformatics and
anomalies are indicative of a problem that could be adintrusion Detection systems, as the similarity measure
dressed with a human factors intervention. The final goafor clustering flight data. We then present two new al-
of the system is to help safety experts discover significangorithms that use Bayesian Networks to efficiently iden-
human factors issues such as pilot mode confusion, i.e., &y anomalous events during the course of the flight. We
flight in which a pilot has lost situational awareness as redemonstrate the performance of these algorithms using
flected in atypicality of the sequence of switches that heoperation information from about 10,000 flights, and de-
or she throws during descent compared to a population ofeloping the base clusters and locating anomalous flights
similar flights. We view this work as an extension of In- by using these sequences.
tegrated System Health Management (ISHM) where the
goal is to understand and evaluate the combined healtBequence analysis is an active and much-studied area in
of a class of aircraft at a given destination. computer science. Some areas where sequence analy-
sis algorithms are prominent are anomaly-based intru-
1. INTRODUCTION sion dgtection in computer system/network_, an_d in_bioin—
formatics. The problem of anomaly detection in aircraft
Previous approaches to the task of anomaly detection fodata, in fact, has many similarities to the problems of net-
cus on continuous sensor data [2], and do not distinguisivork intrusion detection. Anomaly based network intru-
discrete sensors from continuous, thus disregarding thsion detection techniques work by forming some sort of
non-continuous as well as the sequential nature of thenodel of what constitutes normal activity in a network.
discrete sensors. In comparison, we focus on discret@ny deviation from this normal behavior is flagged as
sensors, specifically, sensors recording pilot actions, oanomalous. Our approach to the problem of anomaly
switches. We are interested in the sequence in which thdetection in aircraft data has similarities to the work of
values for these sensors change during the course of Sequeira and Zaki [3], in that both use sequence analysis
flight and finding anomalies in flight behavior based onbased methods, though there are significant differences

this information. in detail.
Our system performs two tasks, as part of the task of 2. DATA DESCRIPTION AND
atypical events detection in flights: a) detection of atyp- PREPROCESSING

10-7803-9546-8/06/$20.092006 IEEE The flight da_ta the protqtype system was m_plemented
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Aviation Systems Monitoring and Modeling element and has been acing the landing phase of 6400 flights. All of these flight
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2. A certain percentage of the sequences in each clus-
ter were identified as atypical, for further investigation.
The sequences picked were the sequences which had the
lowest similarity score with the most central sequence in
each cluster(the most central sequence for each cluster is
identified during the clustering step described above).
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o 200 400 600 a0 1000 1200 100 1s00 3. We analyzed each atypical sequence for anomalies.
Seduence Lenaths New algorithms were developed as part of this stage,
Figure 1. Histogram showing distribution of flight se- \yhich performed a weighted comparison of the atypical
quence lengths. sequence with the other sequences in the cluster, with the
aim of discovering the significant differences between
o ) the other sequences in the cluster and the atypical se-
has the same destination airport. The data was stored g,ence being analyzed. This was an important step of the
al x N x I matrix, where T is the number of distinCt 5p4ysis as simply classifying a certain flight as anoma-
observations for the sensors, N is the number of sensorg,, ;s sij| |eaves a lot of information to be processed by
and F is the number of flights. So, we had’ax N he analyst, to identify why this particular flight was con-
matrix for each flight. This matrix was reduced to a one-gjgered anomalous. The aim of this step of the processing
dimensional sequence as follows: was to automate this task as far as possible.

1. The initial value of each sensor was assumed to be
Zero. We provide an informal introduction to these algorithms

2. At any time-step t, only the sensors that show a tranin the following pages. The complete details of these
sition in value, were recorded in the final sequence. algorithms can be found in [8].

The above transformation gave us a dataset consisting of4. THE NORMALIZED LONGESTCOMMON
6400 sequences, with sequence lengths varying over a SUBSEQUENCEMEASURE
wide range, between 600 and 9000 characters. Follow-

ing this, we performed another reduction step, where aIIThe Longest Common Subsequence(LCS) is a common

sensors that changed values an average of thirty or mo easure for comparing two sequences. Some common
times were removed from the sequences. This was don; omains of appllcatu?n are b|0|nformat|gs, for compar-
with the assumption that sensors that changed values 489 ?enomekgr prqtelndsequgnces, and |r:ISC(f)mputer Sys-
frequently were not recording pilot actions, but aircraft _tem networ mtrusgn etection systems [3), for compar-
system response to pilot actions. This reduced the sdNg uSeraccess patterns.

quence lengths further. Figure 1 contains a histogramG, AandB B i b ‘A
describing the distribution of the new sequence lengths; ven tvx_/o sequences Aand b, b IS a subsequence o
removing some characters from removing some char-

As the figure shows, around 4000 of the sequences are gf ; A will prod B.F I
lengths 0-500, another 1500 have lengths between 50C1ers from A Wil produce B. For example, suppose se-

and 1000, while the rest have lengths between 1000 an(aue‘nce,A is given by ‘gbcdef’, and sequence B is given
1600. by ‘bce’. Then removing characters a, d and f from A

will produce B. Hence B is a subsequence of A.
3. OUTLINE OF APPROACH . .

A sequence B is described as a common subsequence
The main steps performed for detecting anomalies in thef two sequences A and C, if removing some charac-
flight data were as follows: ters from both A and C will produce B. For example,

if a sequence C is given by ‘gdbefce’. Then B(‘bce’)
1. The sequences were clustered into groups/clustergs a common subsequence of both C and A, as remov-
The sequences inside each cluster were more similar timg the characters at locations 1,2,4,5 from sequence C
each other than to sequences in other clusters. The simwill give B, and removing characters at locations 1,4,6



from sequence A will give sequence B. The longest sucl®. If z,, # v, thenz, # x,, implies that Z is an LCS of

subsequence between two given sequences is called th¢,,_; and Y.

longest common subsequence. 3. If &, # y, thenz, # y,, implies that Z is an LCS of
XandY,,_;.

Other measures used for comparing sequences include

the ‘Match Count Polynomial Bound’'(MCP), and its

variants. A detailed discussion of these measures, an@ihis property is used to construct a dynamic program-

a comparison with LCS, can be found in [1]. However, ming algorithm to find the LCS. More information on

LCS differs from these measures mainly in that the MCPthis algorithm can be found in [4]. An alternate approach

family of measures does a one-to-one comparison of sgs the Hunt-Szymanski algorithm [5]. However, both al-

guences. For example, given two sequence A=‘abcegorithms are expensive and take a long time to compute

and B="bcde’, the MCP similarity would be 1, as MCP the LCS, especially as the sequence length increases, a

counts exact 1-1 location matches, which in the aboveeommon reason due to which the LCS is not used as a

case is only for ‘e’ in the fourth location. However, the similarity measure in practice. As part of the project, we

length of the LCS in the above case is 3(‘bce’). Thus,developed a new hybrid algorithm that used ideas from

the advantage of using the LCS measure is that it detectgoth the approaches mentioned above, to calculate the

similarities between two sequences even if they are outCS. Our new LCS algorithm was upto five times faster

of ‘phase’. than the current algorithms. This enabled us to cluster
the sequences data many times faster than current algo-

Due to the varying lengths of the flight sequences, weithms are capable of. More information on our new hy-

normalize the LCS value. We call the normalized valuebrid algorithm for calculating the LCS can be found in

the normalized Longest Common Subsequence score, ¢3].

nLCS. Given two sequences and.S,, the formula to

calculate the nLCS is given by: 5. CLUSTERING AND OUTLIER DETECTION

The flight sequences were clustered using a k-medoids
length(LCS) e_llgorithm called CLARA (Clu§t_ering LARge Applica-
nLCS = tions) [6], [7]. CLARA is a modified version of the PAM
Vlength(Sy) - length(Ss) (Partitioning Around Medoids) [6] algorithm. Given a
value of k for a dataset, PAM finds k clusters in the
Forexample, let A ="abcdefg’. Let B = fodfeacg’. Then gaiaset. |1t finds the clusters by finding a representative
the LCS is given by ‘bdeg’, and the length of the LCS = (4 point for each cluster. For each cluster, the represen-
4. Then tative point, called the medoid, is the most central point
in the cluster, or, the point which has the highest aver-
age similarity compared to all other points in the cluster.
Given the medoids, the clusters can be found as follows:
assign each data point to the medoid with which it gives
— 0.58 the highest similarity score. Hence, to calculate the clus-
ters, it is sufficient to calculate the medoids.

nLCS =

ﬁ’h
oo

However, the nLCS is a difficult and computationally ex- PAM finds the medoids that would maximize the qual-
pensive measure to compute. This is because there igy of a clustering, that is, medoids for which the average
no fast method to find the LCS between two sequencesimilarity of each medoid with its respective cluster is
The classical approach is to use the optimal substructurmaximum overall. However, PAM is a computationally
property of the Longest Common Subsequence. Thigxpensive algorithm. CLARA tries to cut down on the

property is given as follows: time taken for computation by randomly picking a data
subsample from the dataset, and finding the medoids for
LetX=<xy,29,...,xym >andyY =< y1,yo, ..., Yn > this subsample. The medoids selected for this subsample
be two sequences. Let the LCS be given by Z= are then treated as medoids for the entire cluster. The in-
21, 22,...,2k >. Then tuition behind CLARA is that if the subsample is picked

with sufficient randomness, it will mimic the original
1. If 2y = yn 2k = xm = yp, andZ;,_; isthe LCS of  dataset in its distribution, and the medoids for the sub-
X,n_1 andy, 1. sample shall be sufficiently close to the original dataset.



Table 1. Results of clustering on the test dataset of 6400 flights. Clustering yielded one large and one medium-sized
cluster(clusters 1 and 2) with high average similarity, and one small cluster with low average similarity(cluster 3).

Cluster Count| Cluster Size| Percentage of total clusterMean Similarity(nLCS)| Median Similarity(nLCS)
1 3301 52% 0.72 0.75
2 2253 35% 0.71 0.71
3 846 13% 0.55 0.55

Table 1 summarizes the results of clustering on the testhe type of anomalous events we expect the algorithms
dataset of 6400 flights. Three clusters were discoveretb detect can be divided into three categories:
in the data. The largest cluster contained around 52%

of the flights, and had a high average similarity of 0.72.1 A sequence of switches are normally flipped at the
The second cluster contained around 35% of the flight$, ,rent stage in flight, but were not flipped.

and had a high average similarity of 0.71. The above inH A sequence of switches are normaiytflipped at the
formation suggests that at least 70% of the switches arg ,rent stage in flight, but were flipped.

flipped in the same order in most flights, as the nLCS3 A sequence of switches were flipped in the wrong or-
measures the degree to which two sequences follow thgg,.

same order. This is interesting, and suggests that se-
guence analysis techniques are suitable for the task o]t
comparing and discovering anomalies in flight switch
data.

he algorithms understand these events in terms of in-
sertions and deletions. For example, if a sequence of
switches is normally not flipped at the given stage of
flight, but was flipped for a particular anomalous flight,
the algorithms suggest that these switches should be
deletedrom the flight to make it more normal. Similarly,
if some switches should have been flipped, but were not
lipped, the algorithms suggest that these switchdas-be
ertedinto the flight to make it more normal. Note that
ase 3, where switches are flipped in the wrong order,
is simply a combination of insertions and deletions. For
eexample, if we have a switch sequence ABC, when the

Following the clustering step, a certain percentage of th . ; !
flights from each cluster, that were farthest from the clus-normal sequence for pressing these switches is ACB, the

ter centre(medoid), were classified as atypical for furtheralgm'thmS will suggest that the switch C be deleted from

investigation. The next section describes methods for delS current location, and be instered in front of switch B.

. L : . Combined together, these two suggestions give us the in-
tecting anomalies inside these atypical flights. X . .
9 yp 9 formation that the switches were pressed in the wrong

order.

The third cluster was very small in comparison to the
first two clusters, containing only around 13% of the total
flights, and had a low overall similarity score, of 0.55.
There is a strong possibility that the small cluster consist:
largely of anomalous flights, though more investigation
into the operational significance of these clusters need
to be done to establish this.

6. DETECTING ANOMALOUS EVENTS IN

ATYPICAL FLIGHTS We developed two algorithms for anomaly detection: a)

In the previous section, we described our approach toan ‘insertion algorithm’ that predicts desirable insertions
wards finding flights that are atypical and containedin the atypical sequence, covering Type 1 in the three
events that did not follow established patterns. Howeverevents described above, and b) a ‘deletion algorithm’ that
it is not sufficient to detect flights with anomalies, as this predicts desirable insertions into the atypical sequence,
still leaves a lot of information to be analysed, to iden- covering Type 2 of events. Type 3 of anomalous events
tify what the exact events were. In this section we dis-are covered by the insertion and deletion algorithms in
cuss the anomaly detection algorithms we designed, thatndem.
are able to identify anomalous events inside a flight se-
quence, thereby automating this step to a great extentMe again utilize the Longest Common Subsequence to
These algorithms identify any unusual event as anomafind the desirable insertions and deletions into the atypi-
lous. No operational information is currently used for cal sequence. This is because, the common subsequence
this step. between two sequences gives us the areas of the two se-
quences which follow the same order. If there are re-



gions inside a sequence that are not part of the longesthere the flight switch pattern at the same stage is given
common subsequence with most or all of the sequencelsy:
in the cluster, it can only be because, a) they are in the
wrong location compared to the rest of the flight, or b) 101 105 102 105 106
they are in the wrong order.

Here, the first four switches match identically, but
These ideas are formalized by constructing an objectiveswitches 103 and 107 are missing from the atypical se-
function to maximize for the atypical sequence, and therguence.
identifying insertions and deletions to the sequence that
will maximize this function. Intuitively, the objective In this case, the insertion algorithm will suggest that
function is a measure of how similar the atypical se-switches 103 and 107 be inserted after switch 105 at lo-
guence is to the cluster it occurs in, and one simple objeceation 4, in the atypical sequence. Importantly, it will not
tive function could be the average nLCS similarity scoresuggest that switch 102 be inserted after switch 105, even
of the atypical sequence with all the sequences in thehough 102 also occurs after switch number 105, right af-
cluster. We use a more sophisticated objective functionter location 2. It is able to avoid that confusion because it
where we model each cluster as a Bayesian Networkestablished a longest common subsequence between the
The objective function, in that case, is the probability two sequences, which matches the 105s at location 2 in
of generation of the atypical sequence from this Net-the two sequences.
work. After the objective function has been defined, the
next step is to identify the insertions and deletions whichExample 2: Switches normally not flipped at the stage
would maximize the objective function. That is, intu- of flight were flipped. Suppose we have the following
itively, we identify the insertions and deletions which, if switch sequence pattern as usual at a given stage:
made to the atypical sequence, would increase the simi-
larity of the atypical sequence with the cluster it belongs101 105 102 105 106
to, or, in other words, make it less anomalous. These
changes are identified using a greedy algorithm whichAnd the atypical sequence follows the following pattern:
at each step, identifies the modification to the sequence
that would improve the score by the greatest margin. 101 105 102 105 107 106

We now provide some examples of the type of anomain this case, we have a 1-1 correspondence between the
lies that can be discovered by the algorithms. In thesdirst four switches in both sequences, and between the
examples we compare how the algorithms react given awitch at location 5 in the first sequence, and the switch
‘usual’ flight pattern and a new sequence that does noat location 6 in the second sequence. However, switch
follow that pattern. However, it must be remembered thanumber 107 does not match. In this case, the deletion
the algorithms danot identify/generate any single flight algorithm will suggest we delete the switch 107 from the
from the cluster as a ‘usual’ flight. Instead, they makeatypical(second) sequence.
a probabilistic comparison of the atypical sequence with
all the flights in the cluster. The ‘usual’ flight sequence, Example 3: Switches were flipped in the wrong order.
in the discussion below, is just a concept constructed to
provide a more intuitive understanding of how the algo-Let the usual pattern for switches be
rithms operate.

101 103 105 * 107
Example 1: Switches normally flipped at the stage of
flight were not flipped. Let the atypical sequence be

Suppose, at a given stage of flight, the usual flight switch101 103 107 * 105
pattern is given as follows(here the numbers represent

different switches): Here the asterix(*) represents wildcards. That is, there
may be switches that are usually pressed between 105
101 105102 105 103 107 106 and 107, but the fact that 107 is pressed after 105 remains

constant. In this case, as the atypical sequence has switch
Now, suppose we are analyzing an atypical sequence,05 pressed after switch 107, the deletion algorithm will
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Figure 2. Sample graph for landing stage of a flight.The x-axis represents the time till touchdown. The bars along
the positive y-axis represent the switches usually pressed at that stage of flight, but not pressed in this flight. The
bars along the negative y-axis represents the switches usually not pressed at that stage, but pressed for this flight. The
height of the bars gives the algorithm’s confidence in its prediction. The color represents the altitude.

suggest that switch 105 be removed from its location innot pressed at that stage of the flight, but were pressed on
the atypical flight sequence. The insertion algorithm will this flight. The height of the columns indicates the confi-
suggest that switch 105 be inserted before switch 107dence of the prediction. The confidence is calculated as
Combining these recommendations, we are able to deproportional to the improvement in the score of the ob-
duce that the switches 107 and 105 were pressed in thjective function defined for the atypical sequence, if that
wrong order. particular addition/deletion was made to the sequence. A
graph with no bars would mean that the algorithm can-
7. DESCRIPTION OFALGORITHM OUTPUT not suggest any desirable insertion/deletions with non-
zero confidence, and would represent a completely nor-
mal flight. The color of the columns is representative of
the altitude. The colors change from darker to lighter, as

1. A graoh showing the anomalous areas inside an Out_the altitude decreases (for the graph in Figure 2, the al-
- Agrap Ving titude information was synthetically generated, and does
lier sequence Figure 2 presents the graph output for a

. . . not represent the actual altitude information for the given
sample atypical flight taken from the data. The horlzontalﬂigh,[)p 9
axis .reprgsen.ts the time remaining till touchdown. Th. he graph provides a simple visual interface that will al-
positive direction of the vertical axis represents the de5|r-I w the analyst to focus his interest on the areas which
able insertions, that is_, switches that are usually PreSSeLaem most suspicious. For detailed information on these
at that stag.e of the flight, bgt were n'ot pressed for thISanomalies he/she can access at a table generated by the
particular flight. The negative direction represents the

. . - . Igorithms in parallel.
desirable deletions, that is, the switches that are usualli”/1 gorithms in paralle

The anomaly detection algorithms present the following
output:



2. A report on the anomalous area#é report is gener-
ated, giving detailed information about each anomaloustgl
event in the sequence. The report tells the analyst about
the switches anomalously pressed/not pressed during the
flight, along with the confidence.

8. CONCLUSIONS [4]

This paper shows a novel algorithm to detect anomalies
in discrete sequences that record the switch positions in
the cockpits of commercial airliners. The results so far[5]
are promising in that they indicate that we are able to
identify anomalies in very large data sets of aircraft se-
guence data. Moreover, we are able to indicate time steps
at which certain switches should have been either de[6]
pressed or left unchanged.

The algorithm is fast and scalable and has several advan-
tages over standard methods, because it takes advantaﬂé
of the sequential nature of the data. We plan to apply
these techniques to general ISHM problems for a wide
variety of aerospace platforms.

In the next stage of the project, we also plan to build morgg]
sophisticated models of the data sequences, such as by
grouping common sets of contiguous symbol sequences
under a single 'super-symbol’, and by training a Hidden
Markov Model over these 'super-symbol’ groups. We
also plan to reduce the number of false alarms raised by
the anomaly detection algorithms. These false alarms oc-
cur because all detected anomalies are not equally im-
portant. For example, an anomaly involving a pilot talk-
ing to the control tower at an occasion different from
usual, is not as important as an anomaly where some
significant step of the landing phase was not executed.
This can be taken into account by building probabilistic
models of the sequence ‘gaps’, that is areas within se-
guences that do not form a part of the longest common
subsequences. These probabilistic models could be sim-
ple maximum likelihood estimate models, or more soph-
siticated models, such as modeling the gap as a Hidden
Markov Model, or as an even following a Poisson distri-
bution.
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